CHALLENGING INDUSTRY STANDARD CONTAMINANT FILTRATION

Breather filter dessicant evolves as wind farm development expands to harsher tropical and offshore environments.

By Cliff Jones

WITHIN THE PAST FEW YEARS, the growing emphasis on proper operations and maintenance procedures has created a need for better solutions to protect major wind turbine components—in particular, gearboxes and transformers. Instances of gearbox failures and downtime continue to plague the industry and its users. As the industry progresses, wind turbines are beginning to be placed in harsher environments such as tropical climates, arctic climates, and offshore which will exacerbate maintenance issues.

Some of the most susceptible components are the gearbox drive system, power transformers, bearings, and hydraulic systems. Properly maintaining clean lubricating oil is proven to be one of the best preventive maintenance practices an operator/owner can make. Three major factors influence the quality and cleanliness of a lubricant; monitoring, removing, and excluding contaminants.

Removing contamination, in particular moisture and particulate, is more difficult than preventing it in the first place; it costs about ten times more to remove contamination than to prevent it. Preventing the contaminants in the first place is certainly the best option and this is where new solutions should be considered.
the use of silica gel desiccant breathers, but even their performance is very limited.

Lessons can be learned from the Aerospace and Defense industry, where maximizing performance in the harshest environments has been the status quo of daily operations. Moisture control solutions are vital for proper operation of various military and aerospace systems. All of these moisture control solutions have one thing in common, the desiccant being used, ZEOLITE. Currently within the wind energy industry, silica gel breathers are the standard to protect against moisture contamination, however silica gel is not the highest performing desiccant available. Firstly, there is a common misconception within the industry about a desiccant's adsorption capacity by weight. For example, the highest performing indicating silica gel can adsorb up to 33
Gould & Eberhardt is a pioneer in high-speed gear gashing with large diameter carbide-inserted cutters. Our new line of machines has a rigid design and heads engineered with state of the art gear gashing cutter technology. Gear gashing technology has opened many gear cutting applications in wind energy, mining, off-highway construction and other coarse pitch gearing.

Our gasher/hobbers are equipped with the new G&E interchangeable cutter head design. This design provides the option for both internal and external heads on a single column machine with capacities up to 5.5 meters.

Figure 1
percent by weight, where ZEOLITE can adsorb up to 27 percent by weight; therefore it appears silica gel is the better option. This is simply not the case, although silica gel adsorbs 33 percent by weight, the actual dew point or PPM level achieved is limited to around 250 ppm and can only achieve this level in a very narrow operating temperature range, above 25°C silica gel performance drops off drastically, whereas ZEOLITE can provide a significantly lower PPM level, less than 100 ppm at a very wide operating temperature range.

In addition, silica gel's higher 33 percent adsorption capacity is a bit of an unfair claim, since that capacity should be equated to a specific temperature and PPM level achieved. For example, a silica gel providing dry air at 10°Cdp (12,317 ppm)

Figure 2

<table>
<thead>
<tr>
<th>Oil</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A320 Gear Oil</td>
<td>329 ppm</td>
<td>1129 ppm</td>
<td>298 ppm</td>
<td>201 ppm</td>
</tr>
</tbody>
</table>

Table 1
at 30°C will adsorb 36 percent by weight, and a ZEOLITE providing dry air at 10°Cdp (12,317 ppm) at 30°C will adsorb 23 percent by weight, which appears that silica gel performs better. Silica gel does indeed have a higher adsorption percentage by weight, but it only provides relatively “dry” air, 10°Cdp (12,317 ppm). Let’s look at a scenario where we would exceed the ANSI 6006-A03 F.5.3.3.2 standard of less than 500 ppm moisture. A silica gel providing dry air at -40°Cdp (188 ppm) at 10°C will adsorb 3 percent by weight, and a ZEOLITE providing dry air at -40°Cdp (188 ppm) at 10°C will adsorb 18 percent by weight. In a scenario where silica gel is being used and temperatures exceed 10°C the desiccant will not adsorb any moisture, therefore ZEOLITE desiccant should be used as it maintains 5-20 percent adsorption capacity throughout almost any temperature conditions while exceeding the

<table>
<thead>
<tr>
<th>Silica Gel Desiccant volume</th>
<th>Adsorption capacity @ < 500 ppm moisture</th>
<th>Adsorption needed over 6 months</th>
<th>Amount not adsorbed over 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 lbs</td>
<td>82 grams</td>
<td>223 grams</td>
<td>141 grams (1/3 lbs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZEOLITE Desiccant volume</th>
<th>Adsorption capacity @ < 500 ppm moisture</th>
<th>Adsorption needed over 6 months</th>
<th>Amount not adsorbed over 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 lbs</td>
<td>299 grams</td>
<td>223 grams</td>
<td>0 grams (76 grams surplus capacity)</td>
</tr>
</tbody>
</table>

Table 2

We carry the best torque tools made, along with the best support, service, and overall value.

- ERAD Digital Torque Control Systems
- Electric Gear Turning Systems
- Hydraulic Wrench Systems
- Equipment Repair and Calibration
- Equipment Testing & Rental, Delivered to Your Jobsite
- Personnel Training for Safe Usage of Equipment

Torque Tools California
Western States, Hawaii and growing!
Phone 213 380-8049
Fax 213 596-3801
www.TorqueToolsCA.com
High Plains Technology Center Curriculum includes detailed safety modules as an integral part of our program with a full range of core curriculum. Beginning on a basic level and progressing to advanced through completion of skill levels culminating in a full integration of all wind turbine generator systems & sub-systems.

Test 1: New ISO 320 Gear Oil tested
Test 2: ISO 320 Gear Oil Saturated under the following conditions: 80% RH @ 75°F for 88 hours
Test 3: “Test 2 Saturated Gear Oil” conditions: 96 hours in DRYKEEPER box with ZEOLITE
Test 4: New ISO 320 Gear Oil conditions: 96 hours in DRYKEEPER box with ZEOLITE

The test results show that samples significantly increased in PPM level under test “saturation” conditions. In Test 3, where ZEOLITE desiccant was used, the specimen from Test 2 dropped dramatically in PPM level. In Test 4, where ZEOLITE desiccant was used again, the specimen from Test 1 NEW OEM gear oil dropped significantly. This is a very crucial dynamic that proves by keeping the free air headspace above lubricating oil in a gearbox or reservoir at a low enough PPM level it will liberate moisture within the lubricating oil itself.

Reducing operations and maintenance costs have been widely debated, and one suggestion is to extend operations and maintenance intervals beyond the 6 month industry standard. To accomplish this goal,
operators must ensure the size of the breathers being used in their application is sufficient. One solution is to use a manifold to allow for multiple breather use simultaneously. Depending on the environment, and free air volume within a gearbox or reservoir, maintenance intervals could be extended beyond two years. Looking closer, it appears that silica gel breathers are being saturated or fully spent well before their 6 month life span. (See Table 2)

Example: Typical air inhale into a 10 ft³ gearbox free air head space under a diurnal temperature swing of 30°F. Based on MIL-STD-810.

At the end of the day desiccant breathers are still a disposable commodity and longer term solutions should be developed. With the advancements of wind turbine technology, turbines are being placed further offshore, where operations and maintenance costs increase exponentially. Not only do wind farm owners need to pay for technician labor, but additional fuel and transportation costs make six month maintenance intervals cost prohibitive. Long term regenerative moisture control systems should be considered.

Currently, there are a few regenerative solutions in the industry, all which use silica gel. Silica gel has been the preferred choice when selecting a medium to be regenerated, because silica gel will regenerate when baked at 195°F. This low reactivation temperature is attractive as there are many options to generate a temperature of 195°F, but each time silica gel is reactivated it loses a percentage of its drying capacity.

One alternative would be to reactivate ZEOLITE which guarantees better adsorption performance in all environments and temperatures. ZEOLITE is much harder to reactivate, but thankfully, the need for these technologies has already been developed within the Aerospace & Defense industry. For example, Drytech, Inc., has developed a proprietary, Self Regenerating Filter System (SRFSSTM), which provides a constant blanket of dry purge air less than 10 ppm moisture which can condition a gearbox, reservoir, and many other applications. The SFRS system requires a power connection and is maintenance free for 5 years.

As the wind industry continues its astonishing growth, OEMs and wind farm operators should explore new and innovative technologies to provide more robust operations and maintenance programs.